KURIOSOS
"La ignorancia afirma o niega rotundamente; la Ciencia duda."

¿Hasta dónde puede llegar el proceso de fusión dentro de una estrella?

Cuando un número determinado de protones y neutrones se juntan para formar un núcleo atómico, la combinación resultante es más estable y contiene menos masa que esos mismos protones y neutrones por separado. Al formarse la combinación, el exceso de masa se convierte en energía y se dispersa por radiación.
Mil toneladas de hidrógeno, cuyos núcleos están constituidos por un solo protón, se convierten en 993 toneladas de helio, cuyos núcleos constan de dos protones y dos neutrones. Las siete toneladas restantes de masa se emiten en forma de energía.
Las estrellas como nuestro Sol radian energía formada de esta manera. El Sol convierte unas 654.600.000 toneladas de hidrógeno en algo menos de 650.000.000 toneladas de helio por segundo. Pierde por tanto 4.600.000 toneladas de masa cada segundo. Pero incluso a este ritmo tan tremendo, el Sol contiene suficiente hidrógeno para mantenerse todavía activo durante miles de millones de años.
Ahora bien, llegará el día en que las reservas de hidrógeno del Sol lleguen a agotarse. ¿Significa eso que el proceso de fusión se parará y que el Sol se enfriará?
No del todo. Los núcleos de helio no representan el empaquetamiento más económico de los protones y neutrones. Los núcleos de helio se pueden fusionar en núcleos aún más complicados, tan complicados como los del hierro. De este modo se seguirá emitiendo energía.
Pero tampoco mucha más. Las 1.000 toneladas de hidrógeno que, según hemos dicho, se fusionan en 993 toneladas de helio se pueden fusionar luego en 991,5 toneladas de hierro. Al pasar de hidrógeno a helio se convierten en energía siete toneladas de masa, pero sólo una y media al pasar de helio a hierro.
Y al llegar al hierro entramos en una vía muerta. Los protones y neutrones del núcleo de hierro están empaquetados con una estabilidad máxima. Cualquier cambio que se produzca en el hierro, ya sea en la dirección de átomos más simples o de átomos más complejos, no emite energía sino que la absorbe.
Podemos decir por tanto que cuando la estrella alcanza la fase del helio ha emitido ya unas cuatro quintas partes de toda la energía de fusión disponible; al pasar al hierro, emite la quinta parte restante y allí se acaba la historia.
Pero ¿qué sucede después?
Al pasar a la etapa de fusión posterior al helio el núcleo de la estrella se torna mucho más caliente. Según una teoría, al llegar a la etapa del hierro se vuelve lo bastante caliente como para iniciar reacciones nucleares que producen cantidades enormes de neutrinos. El material estelar no absorbe los neutrinos: tan pronto como se forman salen disparados a la velocidad de la luz, llevándose energía consigo. El núcleo de la estrella pierde energía, se enfría de forma bastante brusca y la estrella se convierte por colapso en una enana blanca.
En el curso de este colapso, las capas exteriores, que aún poseen átomos menos complicados que los de hierro, se fusionan todos a un tiempo, explotando en una "nova". La energía resultante forma átomos más complicados que los de hierro, incluso de uranio y más complejos aún.
Los restos de tales novas, que contienen átomos pesados, se mezclan con el gas interestelar. Las estrellas formadas a partir de ese gas, llamadas "estrellas de la segunda generación", contienen pequeñas cantidades de átomos pesados que jamás podrían haber conseguido a través del proceso de fusión ordinario. El Sol es una estrella de la segunda generación. Y por eso, hay oro y uranio en la Tierra.

Este sitio web fue creado de forma gratuita con PaginaWebGratis.es. ¿Quieres también tu sitio web propio?
Registrarse gratis